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On the far wake and induced drag of aircraft
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A set of matched asymptotic expansions is proposed for the flow far behind an aircraft,
with the primary purpose of identifying lift, thrust and drag, particularly induced drag,
in a unified manner in integral statements of the momentum equation. The fluid in the
far wake is inviscid and incompressible, and variations of total pressure are allowed,
as are vortex sheets. A notable feature is that the Trefftz-plane approximation is
not invoked; instead the wake is taken as fully rolled-up, and the analysis proceeds
without the assumption of light loading. Attention is paid to the absolute convergence
of integrals over infinite domains and handling of discontinuities. The expansion
includes a sink term, which appears new, so that the mass flux through a transverse
plane is non-zero, as is the flux of mechanical energy. The lift can be formally
attributed to the velocity induced by the bound vortex of the wing, which is at odds
with some treatments, although consistent with Prandtl’s analysis over a ground
plane. The drag contains the integral of ρ(v2 + w2 − u2)/2, as in many treatments of
the subject, u being the perturbation velocity along the wake. The negative sign for
u2 appears paradoxical on two counts, one of which is resolved here. First, its very
presence instead of the + sign, which would lead to the perturbation kinetic energy and
therefore a compelling explanation of induced drag, is explained by the longitudinal
energy flux. This energy, the integral of ρu2, is continuously provided by the unsteady
starting-vortex system and was deposited earlier by the aircraft. Second, it appears
that negative drag could be predicted by this equation. This is shown to be impossible,
because of inequalities between the integrals of (v2 + w2) and of u2, but the proof is
valid only if the vorticity is of only one sign on each side. A general proof of positivity
has not been derived, because of nonlinearities, but neither has a counter-example.

1. Introduction
This work was motivated by long-standing dissatisfaction with the theory of induced

drag, in quite a few respects. First, much of the analysis requires the wake to be
undeformed; essentially, the vortex sheet has the cross-section given by the wing (and
tail) trailing edges. This will be referred to as the Trefftz-plane approximation, or
TFA. This has been justified with the assumption of ‘light loading’, best summarized
by the ratio of lift coefficient to aspect ratio, Cl/AR. The roll-up of the wake is slow
if Cl/AR � 1. This statement is correct, but not uniformly along the span. It has been
shown, within the two-dimensional time-dependent model of the vortex sheet, that the
rate of roll-up is infinite at the tip (Spreiter & Sacks 1951; Moore & Saffman 1973;
Spalart 1998). Therefore, the TFA is not realistic, even when considering the wing’s
vortex sheet abeam the tail; in fact, roll-up starts before the wing’s trailing edge. This
rapidity of the roll-up is consistent with the numerical difficulties encountered near
the tips by free-wake computational models.
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Second, the classical formula for induced drag contains the integral of ρ(v2 +
w2 − u2)/2 where ρ is the density, instead of the kinetic energy ρ(v2 + w2 + u2)/2 as
might have been expected on physical grounds, and even recent treatments do not
comment (Kroo 2001); the theory has not evolved since Prandtl (Prandtl & Tietjens
1934; Milne-Thomson 1958; Jones 1990). Typically, the ‘transverse kinetic energy’
ρ(v2 +w2)/2 is invoked, and this has no rational basis. Most of the uses of the theory
have approximated the slender roll-up as a two-dimensional time evolution, which
conserves the transverse kinetic energy, making the results insensitive to the TFA, but
leaving the interpretation that the aircraft is incurring drag because it is depositing
kinetic energy flawed. Superficially, this negative sign of u2 allows the induced drag
to be negative, suggesting that the formula is suspect. With light loading, the negative
term is of higher order than the two positive ones, yet a general finding that negative
drag cannot be predicted is more than desirable (although discovering negative
induced drag would have been preferable for the author’s career in the industry).
One possibility was that the puzzling sign was a consequence of the light-loading
approximation, and somehow would disappear in a general theory. It also appeared
possible that the −u2/2 term was not the only one at this order in a systematic
expansion, because the derivation was somehow deficient, and therefore was of no
value. Examples of flawed ‘higher-order theories’ are not rare in fluid mechanics.

These first two concerns appears to be unique to the author. Dissatisfaction with
the theory in the community has centred on the disconnection between the physical
reasoning for lift and that for drag, and on the failure to agree on simple statements
using the principles of conservation of momentum or impulse directly (Sears 1974).
In addition, there is outright disagreement over the value of the simplest and most
essential of integrals: that of vertical momentum in the wake: ρ

∫∫
wdy dz. This

disagreement was explained by L. Wigton in internal Boeing memos of 1987 using
Fubini’s theorem; this improper integral (over an infinite two-dimensional domain) is
not absolutely convergent, because the integrand is only of order 1/r2 for large r and∫∫

|w|dy dz = ∞, so that integrating along one direction and then the other can give
different answers. For a pair of point vortices with circulation ±Γ placed at y = ±b0/2,∫
(
∫

wdy) dz =0, but
∫

(
∫

wdz) dy = Γ b0. The latter order gives the expected amount
of momentum, which has given it an artificial credence, but this integral must be
considered as undeterminate. This research field reveals many instances of a derivation
giving a correct answer for the wrong reasons. The inclusion of a ground plane does
much to resolve these issues, by ensuring an O(1/r3) dependence and therefore
absolute convergence, and pointing to the pressure on the ground plane instead of
wake momentum accounting for the lift (Prandtl & Tietjens 1934). However, it runs
into trouble outside the light-loading approximation (as recognized by Prandtl); the
flight path and the wake cannot be both parallel to the ground. This gives a choice
between level flight, which makes the wake eventually approach the ground and
change shape, or a level wake, which demands a descending flight so that the flow
field is not truly steady.

There is also disagreement over whether the lift can be ‘attributed’ to the velocity
induced by the trailing vortices, or by the bound vortex, or by the bound and starting
vortex together. Now such attributions via the Biot-Savart law to fragments of the
vortex system are somewhat unrigorous; recall that if the fragment is not a divergence-
free vector field, it does not equal the curl of the velocity field produced from it by
the Biot-Savart law (which does not solve ∇ × u =ω, but rather ∇2u = −∇ × ω, along
with ∇ · u =0). Controversies over the role of each fragment continue nevertheless,
further obscured by a degree of arbitrariness in choosing the control volume, as seen
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below. Another unrigorous and damning feature in many treatments is the use of
simple models such as planar rectangular vortex loops or sheets that are the length
of the ‘flight’, when the far-wake is known to have rolled up, and the starting-vortex
region to be very unsteady; see Moin, Leonard & Kim (1986) for the dynamics of a
free hairpin vortex. The starting vortex could not be a mirror image of the bound
vortex, because it is force-free. There can be no doubt that, before dissipation sets in,
it is far from planar, in the (x, z)-plane as well as in the (y, z)-plane. The treatment
as a planar vortex sheet (but with non-uniform descent velocity), loosely motivated
by an elliptical wing loading (Sears 1974), is equally impossible to defend, and led to
conclusions about pressure and velocity which are at odds with ours, and with Sears’
own intuition.

The study is similar to a simpler one aimed at rotors (Spalart 2003) in that a
correct and sufficiently complete description of the far field is sought, and then
exploited in conservation principles. This description involves matched asymptotic
expansions because the wake pierces the surfaces and therefore imposes finite velocities
locally, but only after taking a simpler structure which allows detailed analysis. The
inner-expansion equations are the two-dimensional Euler equations, and the outer-
expansion equations the three-dimensional irrotational condition. Matched asymptotic
expansions are not used as in lifting-line or lifting-surface theory (Van Dyke 1975;
Moore & Saffman 1973); these have the wing region as the inner expansion, and
the irrotational flow far from it, with the wake inside it, as the outer expansion. The
present set and the lifting-line set could be nested, but this is not our purpose here. The
state of the rolled-up wake is considered known, but the aircraft itself is not. There is
no mention either of whether the aircraft is self-propelled, towed, or descending. This
work overlaps with that of Batchelor (1964), but essential differences are that much
of his study concerned axisymmetric vortices, or ones assumed well-separated from
the mirror vortex, and that he emphasized viscous effects.

An ambition which will have to wait is a rigorous definition of induced drag in
viscous flows. The concept is widely used in the industry, and it would be very valuable
if a Navier–Stokes solution could be processed to rigorously separate induced drag,
parasite drag, compressible drag, and finally thrust (in fact, even the division into
drag and thrust is not exact). This separation is discussed below once the relevant
formula is available, not that new ideas are proposed. In what follows, the wake
is allowed to contain non-uniform total pressure H , which reflects propulsion and
viscous drag (viscous effects are neglected only in the far wake, where gradients are
weaker). Some questions are relevant only if these two effects are absent; for brevity,
such an aircraft will be called a ‘glider’.

The core of the paper is in § 2, with lengthy equations leading to a rather simple
result, and physical discussions. After a summary in § 3, the Appendix recalls the
mathematical problem of positivity of induced-drag predictions, which remains to be
solved.

2. Equations
2.1. Overview

The coordinates are oriented so that the wake is parallel to the x-axis; the velocity
vector of the aircraft with respect to the air mass is

−U = −(U, 0, W ) = −
√

U 2 + W 2(cos ε, 0, sin ε).
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The angle ε is not simply related to downwash angles at the wing, or the direction
of the force vector; it is not assumed to be small. Partial derivatives with respect
to time are in the air-mass frame, and u =(u, v, w) is the local velocity vector with
respect to the air mass. The y-axis is lateral and the wake symmetric in y, and the
z-axis is pointing approximately upwards; observe that gravity is irrelevant. Define

r ≡
√

x2 + y2 + z2 and r2D ≡
√

y2 + z2; the aircraft is near r = 0. These axes simplify
the algebra, compared with flight-path axes, and the force vector will be resolved in
due course to obtain lift and drag. Further, the wake is studied when fully rolled
up, that is, asymptotically independent of x. The flow is also steady in the reference
frame attached to the aircraft. Therefore, the operators ∂x and ∂t +U∂x + W∂z both
give zero in the far wake, implying that ∂t + W∂z also does: the wake is steadily
descending at a velocity W .

The dominant quantities of the wake are its circulation Γ over a half-plane y > 0
and its effective span b0; the centroids of vorticity ωx in each half-plane (defined for
the right half by

∫∫
y>0

yωxdy dz/
∫∫

y>0
ωxdy dz) are at y = ±b0/2, z = 0: in other words

Γ ≡
∫∫

y>0
ωxdy dz and Γ b0 ≡

∫∫
yωxdy dz, while

∫∫
y>0

zωxdy dz = 0. Unless otherwise
noted, such double integrals will cover the entire (y, z)-plane, and subscripts such
as y > 0 here or x = X below qualify the region of integration; b0 is commensurate
with the span b of the wing, but b plays no role here. The conservation of Γ and b0

along the wake results from the inviscid assumption; note that real wakes have very
high Reynolds numbers, and in addition that rotation tends to suppress turbulence
in vortices. The wake fluid, meaning all the streamlines which carry vorticity or total-
pressure differences, is assumed to be grouped within a region in the (y, z)-plane with
a size of the order of b0, called the ‘wake region’. Extreme cases in which two or more
vortex pairs drift apart are excluded.

The existence of a fully rolled-up state is assumed, based on observations of
smoothly loaded wings (Spalart 1996). Their wakes progress to the eventual state via
stretching of the material lines in the (y, z)-plane, a process which yields axisymmetric
states for single vortices. The case in which the mature state of the wake has two or
more helical vortices on each side is not as rare as that of ‘parting’ pairs (Spalart
1998). It is excluded here by the assumption that ∂x = 0; however, a generalization
should not be very difficult by averaging over one streamwise period of the helices.

Matched asymptotic expansions are used, with the integrals calculated from a
composite expansion uinner + uouter − uint, the subscript int standing for ‘intermediate’
(Van Dyke 1975). The length scales are the following. The inner scale is b0, and in this
expansion x-derivatives are neglected. The outer scale X � b0 gives the distance from
the aircraft to the plane which ends the control volume downstream of the wing. The
control volume starts with an upstream plane, for instance at x = −X.

The starting vortex is at infinity in x. Another option would be to include a simple
model of the starting vortex, at some location X′ � X, in the expansion. This would
have the advantage of making the two integrals of w at x = ±X each absolutely
convergent, whereas here only the integral of the difference is so (§ 2.10). As a result,
the control volume could be extended to −∞ in x. However, including a starting
vortex at finite X′ makes the flow unsteady; it introduces an acceleration of order
UΓ b0/X′3, which needs to be examined in the control volume. It turns out that the
integral of the acceleration is zero, but the integral of the momentum is infinite, so
that taking its time derivative would not be well-defined.

A general remark on the starting-vortex system is that it is highly unsteady, and
must not be idealized as part of a rigid rectangle. This is what makes conservation
of impulse unusable for drag (even for lift, it is correct only to leading order), as
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far as the author has found, unless it is assumed that even the region of the starting
vortex has failed to roll up (as in Milne-Thomson 1958), which is incorrect. In the
literature this issue forced a recourse to energy arguments, and a dichotomy (Jones
1990). This starting-vortex system is known only inasmuch as it is in a region X′ � X

and the vortices which connect to it have circulation Γ and centroid spacing b0. It is
very plausible that velocities in this region are of order Γ/b0, so that the evolution
since the beginning of the flight has displaced vortex lines by distances of order
(Γ/Ub0)X

′, thus creating an unknown impulse of order Γ 3/b2
0 × X′2/U 2. The integral

of a velocity induced by this impulse over a closed control surface of size X is then
at most of order X3Γ 2/U 2b2

0X
′2. A consequence of this argument is that the velocity

level prevailing in the starting system must be smaller than U for the structure of
our model to apply at all; that is, for the flight to generate an increasing length of
identical wake. The light-loading limit Γ � Ub0 is a sufficient condition for this, but
finite values of this ratio also allow it.

Similarly the details of the bound-vortex system, which could include a wing, a
tail, rotors, and other surfaces, and is viewed as including the three-dimensional near-
aircraft downwash and roll-up, are not known. The only information on this region
is contained in the wake it generates at X, and the assumption that the bound-vortex
system deviates from a rectangular line-vortex system with its corners at (0, ±b0/2, 0)
only by distances of order b0. This simplified line-vortex system will be used to build
the outer expansion.

2.2. Basic integrals

Conservation of momentum indicates that the force vector on the aircraft is

F = −
∫∫

[p n + ρ((U + u) · n)(U + u)] dS (2.1)

where the unit normal vector n is pointing out of the control volume, which surrounds
the aircraft. Bernoulli’s equation is

p = p∞ + �H + ρ
||U ||2 − ||U + u||2

2
. (2.2)

The total pressure of fluid which encountered the aircraft was altered by an amount
�H , due to parasite drag or propulsion, and this only in and near the wake, in a
tubular region with a diameter of order b0 (Batchelor 1964). Equation (2.1) becomes

F =

∫∫ [(
ρ

2U · u + ||u||2
2

− �H

)
n − ρ((U + u) · n)(U + u)

]
dS, (2.3)

and conservation of mass
∫∫

u · ndS = 0 brings a marginal simplification:

F =

∫∫ [(
ρ

2U · u + ||u||2
2

− �H

)
n − ρ((U + u) · n)u

]
dS. (2.4)

2.3. Control volume

The control volume is the unbounded region between two transverse planes, which is
appropriate for the following reason. A finite control volume can be chosen as a right
cylinder of radius R bordered by these two planes. All the terms in the expansion
will be seen to decay as fast as 1/r2

2D . As a result, the contribution to the integrals
from the cylindrical part of the surface, which has an area of order R, vanishes as R

increases to infinity. Therefore, it does not need to be calculated in any detail, and the
task is reduced to evaluating the limit of the contributions of the two disks as R goes
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to infinity. The fact that these integrals are well-behaved will confirm the reasoning
on the cylindrical surface. All the integrals will be versus dS = dy dz.

2.4. Intermediate expansion

This expansion is introduced first, is designed in some respects for convenience, and
later justified step by step. It is the velocity field uint(x, y, z) induced by a dipole of
strength Γ b0 placed on the x-axis, but only for x > 0:

u = 0, (2.5)

v = −He(x)
Γ b0

2π

2yz

(y2 + z2)2
, (2.6)

w = He(x)
Γ b0

2π

y2 − z2

(y2 + z2)2
. (2.7)

Subscripts such as int in uint are omitted when the context allows it. For large r2D , v

and w are of order Γ b0/r2
2D . They contain arbitrary and in fact singular behaviour,

both across x =0 because of the Heaviside function He (a notation which allows the
use of a global additive composite expansion) and near the centreline of the wake,
for r2D of order b0. For the latter, two line vortices could have been preserved instead
of a dipole, giving weaker singularities, or even regularized. However, this behaviour
near the axis merely needs to match the one given the outer expansion uouter, so that
the two cancel in the composite expansion.

2.5. Inner expansion

This is confined to x > 0, as is the intermediate expansion, and involves the quantities
(u, v, w, p) as functions of y and z, with a stream function ψ such that v = ∂ψ/∂z

and W + w = −∂ψ/∂y. Also, ψ ′ ≡ ψ + Wy is the stream function of the perturbation
velocities (v, w), and ∇2ψ ′ = ∇2ψ = −ωx . The stream function ψ is 0 on the centreline,
y = 0, and on streamlines on each side which surround the wake and connect with the
centreline. The region inside these limiting streamlines is the wake region, in which
fluid is circulating; outside it, fluid is streaming by, irrotational and with unaltered
total pressure. Each value of ψ identifies a streamtube, on which several quantities
will be conserved: �H (ψ), u(ψ), and ωx(ψ) (since ψ is not necessarily monotonic,
this notation is ‘shorthand’ for the statement that the gradients of these functions are
multiples of the gradient of ψ , which is what is used mathematically). The streamwise
volume flux through the wake region in this expansion is the well-defined integral
S ≡

∫∫
udy dz. In the light-loading approximation, Γ/Ub0 � 1, this quantity is of

second order, S/Ub2
0 =O([Γ/Ub0]

2), but this approximation is not used.
The governing equations

∂v

∂y
+

∂w

∂z
= 0, (2.8)

v
∂u

∂y
+ (W + w)

∂u

∂z
= 0, (2.9)

v
∂v

∂y
+ (W + w)

∂v

∂z
= − 1

ρ

∂p

∂y
, (2.10)

v
∂w

∂y
+ (W + w)

∂w

∂z
= − 1

ρ

∂p

∂z
(2.11)
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are manipulated to prepare identities for later use. Eliminating p between (2.10)
and (2.11) and using (2.8) gives conservation of streamwise vorticity as expected,
ωx =ωx(ψ), while (2.9) dictates u = u(ψ). Combined with the definition of total
pressure (2.2), (2.10) and (2.11) give

∂

∂y

(
(U + u)2

2
− �H

ρ

)
= −(W + w)ωx = ωx

∂ψ

∂y
, (2.12)

∂

∂z

(
(U + u)2

2
− �H

ρ

)
= vωx = ωx

∂ψ

∂z
, (2.13)

i.e.
d

dψ

(
(U + u)2

2
− �H

ρ

)
= ωx, (2.14)

showing that �H is also a function of ψ . The function f ≡ Uu+u2/2−�H/ρ equals
(p∞ − p)/ρ + (W 2 − v2 − (W + w)2)/2, in other words it is the Bernoulli function in
the transverse plane. Further, u =0 outside the wake region because of (2.14) (ωx and
�H being 0).

The regularity of the functions involved must be known, in view of the inviscid
approximation, as pointed out by a reviewer. Vortex sheets are admitted, which is
unavoidable in the glider situation (although for typical initial vortex sheets, the
endless stretching mentioned earlier weakens the velocity jump and correspondingly
the distance between layers of the rolled-up sheet, leading the flow field towards
a continuous solution). The velocity components u, v and w may be discontinuous
across these sheets; ψ is continuous, but may have jumps in its derivatives. As a result,
an expression such as vωx in (2.13) is formally ambiguous: it could be the product of
a Dirac δ function and a discontinuous function. It is in fact not ambiguous, because
the two factors are related, which can be seen when (2.12) and (2.13) are re-written as

∂

∂y

(
(U + u)2

2
− �H

ρ

)
=

1

2

∂

∂y
(v2 − w2) +

∂

∂z
(vw) − Wωx, (2.15)

∂

∂z

(
(U + u)2

2
− �H

ρ

)
=

1

2

∂

∂z
(w2 − v2) +

∂

∂y
(vw) . (2.16)

These expressions involve the first derivatives of discontinuous functions, but no
ambiguous products. The internal structure of the vortex sheets is unspecified, but
has no impact on the quantities needed, which are simple integrals of u and u2.

Now, (2.15) and (2.16) are used to express a key integral of the velocity field. With
r here the (y, z) vector, we proceed:∫∫

f dy dz =

∫∫
f

(
∇ · r
2

)
dy dz =

1

2

∫
f r · n ds − 1

2

∫∫
r · ∇f dy dz

= −1

2

∫∫ (
y

[
1

2

∂

∂y
(v2 − w2) +

∂

∂z
(vw) − Wωx

]

+ z

[
1

2

∂

∂z
(w2 − v2) +

∂

∂y
(vw)

])
dy dz (2.17)

in which the line integral of f r · n ds is written for completeness, and then dropped
because outside the wake region, f = 0.

Most of the integrals in (2.17) are shown to be zero, as follows. The total circulation
of the wake is zero by symmetry, so that v and w are of order 1/R2 for large R (with
the structure of rational polynomials in R); the integrands are therefore of order 1/R4,
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making the integral absolutely convergent. Fubini’s theorem applies, and line integrals
can then be calculated in any convenient direction. This includes

∫
∂(vw)/∂y dy = 0

and
∫

y∂(v2 − w2)/∂y dy = −
∫

(v2 − w2) dy. The integrals of (v2 − w2) and (w2 − v2)
cancel, leaving only the integral of yWωx/2, which equals WΓ b0/2 directly from the
definition of b0. A valuable consequence of this string of identities is that∫∫ (

2Uu + u2 − 2�H

ρ

)
dy dz = WΓ b0, (2.18)

or alternatively ∫∫ (
u2 − 2�H

ρ

)
dy dz = WΓ b0 − 2US, (2.19)

which will be used to determine the role of u2 in the final result.
The integral we wish to bound from above, in order to rule out the prediction of

negative induced drag, is
∫∫

u2dy dz; because of (2.19), this amounts to bounding S

from below. Introducing the function g ≡
∫

ωxdψ+�H/ρ, we have Uu+u2/2 = g and
therefore u =

√
U 2 + 2g − U . Taking this branch of the quadratic implies U + u >

0, which is logical within the model of the flow; there is no reversal in the far
wake. A consequence to be used below is that u has the sign of g. We also have

∂(u2)/∂U = −2u2/
√

U 2 + 2g � 0, and it can be shown that u2 � 2|g|. Unfortunately,
in general, the integral of 2|g| is not easily related to simple quantities, nor bounded
from above.

We now bound the other integral which enters the classical drag formula from
below, ∫∫

(v2 + w2)dy dz =

∫∫
ωxψ

′dy dz =

∫∫
ωxψ dy dz + WΓ b0, (2.20)

through standard identities. Note that ψ and ψ ′ are continuous, so that their products
with ωx are well-defined even if ωx is singular. Now the integral of ωxψ can be
restricted to the wake region (WR), since vorticity is zero outside it. On its boundary,
ψ = 0, leading via the standard identity ∇ · (ψ∇ψ) = ψ∇2ψ + ∇ψ · ∇ψ to∫∫

(v2 + w2)dy dz =

∫∫
WR

||∇ψ ||2 dy dz + WΓ b0 � WΓ b0. (2.21)

Observe the presence of WΓ b0 both in (2.19) and in (2.21).
An identity of Spreiter & Sacks (1951) may provide some perspective, if only by

establishing that Γ and W have the same sign:

WΓ = −
∫∫

wωxdy dz = −
∫∫ [

1

2

∂

∂y
(w2 − v2) − ∂

∂z
(vw)

]
dy dz =

1

2

∫
CL

w2dz;

(2.22)

the last integral is taken along the centreline (CL) of the wake region, the line y = 0.
Another property will be useful, and concerns the integral of uu. Since u is a function

of ψ , we can define a function h with dh/dψ = u. Then, uv = dh/dψ × ∂ψ/∂z = ∂h/∂z

and u(W + w) = −dh/dψ × ∂ψ/∂y = −∂h/∂y. Since u reaches 0 immediately outside
the wake region and therefore h reaches its outside value similarly, the integral of its
gradient is 0, showing that

∫∫
uvdy dz =

∫∫
u(W + w)dy dz = 0, and therefore∫∫

u udy dz =

∫∫
u2 dy dz ex − WSez, (2.23)

where ex , ez and ez are the unit vectors.
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Finally, the Biot-Savart law is used to relate the inner and intermediate expansions.
The v component at a point (Y, Z) (with R2 = Y 2 + Z2) is given by

v = − 1

2π

∫∫
ωx

Z − z

(Y − y)2 + (Z − z)2
dy dz

= − 1

2π

∫∫
ωx

[
Z

R2
+

2ZYy + (Z2 − Y 2)z

R4
+ O

(
b2

0

R3

)]
dy dz

= − 1

2π

2ZY

(Y 2 + Z2)2

∫∫
yωx dy dz + O

(
Γ b2

0

R3

)
= −Γ b0

2π

2ZY

(Y 2 + Z2)2
+ O

(
Γ b2

0

R3

)
(2.24)

using symmetry (ωx(−y, z) = −ωx(y, z)) for the two integrals not containing y and the
fact that the vorticity is distributed within a region of order b0. It is seen in (2.24) and
the equivalent result for w that the difference between the inner expansion and the
intermediate one (2.5)–(2.7) for v and w is of order Γ b2

0/r3
2D for large r2D (each one is

of order Γ b0/r2
2D). For u, the difference is zero outside the wake. This is what makes

(2.5)–(2.7) the correct intermediate expansion, pending a similar property relative to
the outer expansion. This difference is well-behaved for large r2D , and any integrals
of it are absolutely convergent thanks to the 1/r3

2D decay. In addition, because of
the continuity equation ∂v/∂y + ∂w/∂z = 0, the integral of this difference for v and
for w equals 0 (for instance the line integral

∫
wdy is independent of z because of

continuity, and must be zero based on the behaviour for large r2D). In summary,

∫∫
(uinner − uint) dy dz = Sex. (2.25)

2.6. Outer expansion

The leading vortex term in the far field is the flow induced by a rectangular vortex
‘hairpin’ defined by Γ and b0, starting at (0, ±b0/2, 0) and ending at infinity. A sink
term will be introduced shortly. Here, only terms with non-zero contributions to
far-field integrals are considered.

The hairpin vortex is, of course, not an accurate description of the vortex system
near the aircraft, which is not located precisely at (x, z) = (0, 0). The initial roll-up
and steeper descent under the influence of the bound vorticity are unspecified, but the
difference between the true vortex system and the hairpin vortex is finite in extent.
It is bounded by the circulation and length scale of the wake, so that the velocity it
induces is of order Γ b2

0/R
3 for large R. Therefore, its contribution to integrals in a

plane at a distance X is of order Γ b2
0/X, and vanishes for large X. It will be confirmed

that the contributions from the hairpin vortex are invariant under translations, either
in x or z; this is consistent with the fact that the location of the aircraft is not
specified to within a multiple of b0.

Using the Biot-Savart cosine law for a filament, the bound vortex has (Milne-
Thomson 1958)

u =
Γ

4π

[
y + b0/2√

x2 + (y + b0/2)2 + z2
− y − b0/2√

x2 + (y − b0/2)2 + z2

]
z

x2 + z2
(2.26)
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with a similar formula for w but v = 0; the leading terms, denoted in later use by
ubound , are

u =
Γ b0

4π

z

r3
, v = 0, w = −Γ b0

4π

x

r3
. (2.27)

A semi-infinite trailing line vortex at y = b0/2 has

w =
Γ

4π

[
1 +

x√
x2 + (y − b0/2)2 + z2

]
y − b0/2

(y − b0/2)2 + z2
(2.28)

with a similar formula for v, and with u =0.
For the vortex pair at ±b0/2, the leading terms utrail for large r2D/b0 are u =0,

v = −Γ b0

4π

[
x

r3
+

(
1 +

x

r

) 2

y2 + z2

]
yz

y2 + z2
, (2.29)

w =
Γ b0

4π

[
y2

r2
+

(
1 +

x

r

) y2 − z2

y2 + z2

]
1

y2 + z2
. (2.30)

When in addition r2D � r , that is, at small angles to the wake direction, we have x ≈ r

and the leading terms are identical to the intermediate expansion (2.5)–(2.7). The
difference between the outer and the intermediate expansion is of order Γ b0/r2 for
large r . This is the second step in confirming the design of the intermediate expansion.

The flow usink induced by a sink at the origin is

u = −S ′ x

4πr3
, v = −S ′ y

4πr3
, w = −S ′ z

4πr3
, (2.31)

in which S ′ is unspecified for now. This is again of order 1/r2 for large r , leading to
finite integrals in the transverse planes. The associated kinetic energy is also finite. The
volume flow through a plane is ±S ′/2, depending on the sign of x. A sink does not
appear to have been involved before in infinite space, but is implicit in wind-tunnel
analyses (Maskell 1972).

2.7. Composite expansion

This is the field uinner +[utrail +ubound +usink ]− uint. The orders of magnitude for large r

or r2D are as follows: uinner − uint is confined to a region of order b0 in the (y, z)-plane,
and key integrals of it are known from § 2.5; ubound and usink are of order Γ b0/r2;
utrail is of order Γ/b0 near the wake and of order Γ b0/r2

2D for large r2D . However, it
can be verified that utrail − uint is of order Γ b0/r2.

These known magnitudes lead to cancellations. The integral of the product of a
term that is confined in the (y, z)-plane and a term that is of order 1/r2, and therefore
1/X2, vanishes for large X. This in contrast to the integral of the sink term (2.31),
for instance, which has a peak of order S ′/X2 but a dependence on (y, z) that is not
confined; it expands for larger X. This provides a rigorous reason for dropping many
of the products, which has often been done on an intuitive basis instead.

Mass conservation will be imposed, with the deviation from free-stream mass
flow split into two parts ṁUP and ṁDP , for the upstream and downstream planes
respectively. The integral (2.4) is similarly split into FUP , which contains the
contributions at the upstream plane, and FDP , which contains the contributions
at the downstream plane. In the subsections devoted to each of the planes, the linear
(as opposed to products) contribution of the trailing vortices is left unfinished, as it
needs to be taken together for the two planes, in § 2.10.
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2.8. Upstream plane, x = −X

In this plane, n = −ex , and the only terms are ubound , utrail , and usink . Because they are
of order 1/r2, only linear terms in (2.4) survive as X → ∞, and

ṁUP = −ρ

∫∫
x=−X

(ubound + utrail + usink ) · ex dy dz = −ρ
S ′

2
(2.32)

because of z-symmetry in ubound , and because utrail =0. Also,

FUP = ρ

∫∫
x=−X

[−(U · (ubound + utrail + usink )) ex

+ U (ubound + utrail + usink )] dy dz. (2.33)

Two of the integrals are simple:∫∫
ubound dy dz =

Γ b0

2
ez, and

∫∫
usink dy dz =

S1

2
ex;

these will be used again. The first one was used by Prandtl long ago (Prandtl &
Tietjens 1934), but the second one appears to enter for the first time. We recognize
its higher-order status within light-loading situations; however, the induced drag is
of the same order. The result is that

FUP =
ρΓ b0

2
(U ez − W ex) + ρ

∫∫
x=−X

(Uutrail − U · utrail ex) dy dz (2.34)

with the integral of utrail to be addressed in § 2.10.

2.9. Downstream plane, x =X

This region has numerous terms, but almost all products drop out. Here, n = ex ,
leading to

ṁDP = −ρ

∫∫
x=−X

(uinner − uint + ubound + utrail + usink ) · ex dy dz = ρ

(
S − S ′

2

)
(2.35)

so that using (2.32), mass conservation naturally reduces to S ′ = S. From here on, S ′

will be written as S. For momentum,

FDP =

∫∫
x=X

(ρ[2U · (uinner + ubound + utrail + usink − uint)

+ ||uinner + ubound + utrail + usink − uint||2]/2 − �H )ex

− ρ (U + uinner + ubound + utrail + usink − uint)

× (uinner + utrail + ubound + usink − uint) dy dz. (2.36)

This is re-arranged into

FDP = ρ

∫∫
x=X

U · (uinner − uint)ex dy dz + ρ

∫∫
x=X

U · (utrail + ubound + usink )ex dy dz

+ ρ

∫∫
x=X

||uinner||2
2

ex dy dz+ρ

∫∫
x=X

uinner · (utrail + ubound + usink − uint)ex dy dz

+ ρ

∫∫
x=X

||utrail + ubound + usink − uint||2
2

ex dy dz

− ρ

∫∫
x=X

(U + uinner) uinner + (utrail + ubound + usink − uint) uinner dy dz
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− ρ

∫∫
x=X

(U + uinner)(utrail + ubound + usink − uint) dy dz

− ρ

∫∫
x=X

(utrail + ubound + usink − uint)(utrail + ubound + usink − uint) dy dz

−
∫∫

x=X

�H ex dy dz. (2.37)

in order to bring out terms of order 1/X2, which are utrail − uint, ubound , and usink .
After products of order 1/X4 are dropped, the remaining terms for large X are

FDP = ρ

∫∫
x=X

U · (uinner − uint)ex dy dz + ρ

∫∫
x=X

U · (utrail + ubound + usink )ex dy dz

+ρ

∫∫
x=X

(
||uinner||2

2
ex − (U + uinner)uinner−U (utrail+ubound+usink −uint)

)
dy dz

−
∫∫

x=X

�H ex dy dz. (2.38)

The terms are now expressed from known quantities where possible. First, recall that∫∫
(uinner − uint) dy dz = Sex by (2.25). Then,∫∫

ubound dy dz = −Γ b0

2
ez and

∫∫
usink dy dz = −S

2
ex

as before. The term Uuint is moved to combine with Uuinner. The x =X can be omitted
in most places. This gives

FDP =
ρΓ b0

2
(U ez − W ex) + ρ

∫∫ (
||uinner||2

2
ex − uinner uinner

)
dy dz

+ρ

∫∫
x=X

((U · utrail ) ex − Uutrail ) dy dz −
∫∫

�H ex dy dz. (2.39)

The integral of uinneruinner is known from (2.23), finally giving

FDP =
ρΓ b0

2
(U ez − W ex) + ρ

∫∫ ||uinner||2
2

dy dzex −
∫∫

u2
inner dy dz ex + ρWSez

+ρ

∫∫
x=X

(U · utrail ex − Uutrail ) dy dz −
∫∫

�H ex dy dz. (2.40)

2.10. Joint integral of utrail over the two planes

The contributions left unresolved in (2.34) and (2.40) are

Ftrail ≡ ρ

∫∫
x=−X

(Uutrail − U · utrail ex) dy dz + ρ

∫∫
x=X

(U · utrail ex − Uutrail ) dy dz

(2.41)
or

Ftrail ≡ ρ

∫∫
(U�utrail − U · �utrail ) ex dy dz (2.42)

where �utrail ≡ utrail (−X, y, z)−utrail (X, y, z). We consider only the integral of w, since
in �utrail , u =0 and v integrates to 0 by symmetry. It is given by
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�wtrail =
Γ b0

4π

[
y2

(X2 + y2 + z2)
+

(
1 − X√

X2 + y2 + z2

)
y2 − z2

y2 + z2

− y2

(X2 + y2 + z2)
−

(
1 +

X√
X2 + y2 + z2

)
y2 − z2

y2 + z2

]
1

y2 + z2
(2.43)

or

�wtrail = −Γ b0X

2π

1√
X2 + y2 + z2

y2 − z2

(y2 + z2)2
. (2.44)

This integral provides absolute convergence since the integrand is of order 1/r3
2D , and

when written in polar coordinates it is proportional to
∫ 2π

0
(cos2 θ − sin2 θ) dθ , which

equals zero. Therefore, the joint integral is zero.

2.11. Final result

Adding FUP and FDP produces a simpler formula:

F = ρΓ b0(U ez − W ex) + ρWSez

+ ρ

∫∫
x=X

v2
inner + w2

inner − u2
inner

2
dy dz ex

−
∫∫

x=X

�H dy dz ex. (2.45)

Recall that the x-axis is aligned with the wake, not the flight path; the equivalent
expression in flight axes is less readable, except for the first term. The first line starts
with the classical lift, −ρΓ b0(ey × U), and ends with a higher-order (in the light-
loading regime) modification which carries a small amount of lift and drag. The third
contains parasite drag and thrust; in cruise flight, it will allow F to be aligned with
gravity. The second line repeats the traditional integral for induced drag, but directed
along the x-axis instead of the flight direction; this entails a loss of lift. This general
agreement is favourable in terms of consistency, but defeats the hope of removing the
negative sign for u2/2. Fortunately, its presence will be reconciled with kinetic-energy
considerations shortly; the issue of whether negative induced drag could be predicted
will be taken up as well.

In formula (2.45), the lift can be formally traced in the integrals to the bound
vortex, with half in (2.34) and half in (2.40). This means attributing half of the lift to
upwash upstream of the aircraft and half to downwash downstream of it, just like in
two dimensions. However, if the vortex system is terminated at a finite distance X′,
no matter how large, the upstream integral vanishes, and the downstream integral
accounts for all the lift (L. B. Wigton, private communication), which to some is
intuitively more satisfying. This dependence on a detail suggests that the relevance of
the share between these two planes is low. On the other hand, the formal connection
with the bound vortex and possibly the starting vortex, rather than the trailing
vortices, is clear and contrasts with some established interpretations (§ 1).

2.12. Analysis via the kinetic energy

Guided by classical arguments, an educated observer might expect that, possibly
within factors such as cos ε, the induced drag equals the energy deposited by the
airplane per unit length of the wake; this contains ρ(u2 + v2 + w2)/2. This kinetic
energy is relative to the air mass; an energy statement in the frame of the aircraft can
be derived, but is not very helpful.
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In order to explore the kinetic energy the control volume, the half-space x < X, is
now fixed with respect to the atmosphere. The steady flow pattern of the aircraft is
travelling at a velocity U normal to the transverse plane and therefore from kinematics

ρU

∫∫
x=X

||u||2
2

dy dz = ρ
d

dt

∫∫∫
x<X

||u||2
2

dV = ρ

∫∫∫
x<X

u · ∂u
∂t

dV (2.46)

with the time derivative in the third integral also in the frame of the atmosphere.
We use the momentum equation ∂u/∂t = u × ω − ∇(p/ρ + ||u||2/2) to reformulate
the right-hand side of (2.46). First, u · (u × ω) = 0. Second, with the vector identity
u · ∇(p/ρ + ||u||2/2) = ∇ · ((p/ρ + ||u||2/2)u) − (p/ρ + ||u||2/2)∇ · u and the continuity
condition ∇ · u = 0, we are left with the integral in the plane of (p/ρ + ||u||2/2)u · n:
(2.46) becomes

ρU

∫∫
x=X

||u||2
2

dy dz = P −
∫∫

x=X

(
p − p∞ + ρ

||u||2
2

)
u dy dz (2.47)

where P is the power applied to the fluid in the region x < X by the aircraft in an
unspecified manner (much like the manner in which it applies a force onto the fluid).
The last integral contains the total pressure, but now with respect to the atmosphere,
and represents the flux of mechanical energy across the transverse plane. This flux
defeats the educated observer’s tentative identity. This is re-arranged, and the use of
Bernoulli’s equation leads to alternative forms for P :

P =

∫∫ (
ρU

||u||2
2

+

(
p − p∞ + ρ

||u||2
2

)
u

)
dy dz

=

∫∫ (
ρU

||u||2
2

+ (�H − ρU · u) u

)
dy dz. (2.48)

In summary the half-space x < X is increasing its atmosphere-frame kinetic energy at
the expected rate ρU/2

∫∫
||u||2dy dz, but it is also expelling fluid into the wake region

with low total pressure (again in the reference frame of the atmosphere) p +ρ||u||2/2,
while accepting from fluid all around with higher total pressure, due to the sink term.
The region x > X, or ‘starting region’, is surrendering energy to the region x < X, or
‘aircraft region’. As a result, the power supplied by the aircraft is lower than the rate
of increase of the kinetic energy integrated over the region x < X. Energy, created
earlier, enters the aircraft region.

For a system without total-pressure changes, �H =0, the induced drag is Di ≡
F · U/||U ||, for which (2.45) gives

Di = sin ερWS + ρ cos ε

∫∫ (
||uinner||2

2
− u2

inner

)
dy dz (2.49)

so that the induced power Pi ≡ Di ||U || is

Pi = ρW 2S + ρU

∫∫ (
||uinner||2

2
− u2

inner

)
dy dz. (2.50)

This identity can also be obtained from (2.48), using the composite expansion and
(2.23). The factor cos ε in (2.49) comes from the fact that the distance travelled by the
aircraft is the length of wake along the x-axis, divided by cos ε. This factor cancels in
(2.50). In summary, the kinetic energy is accounted for, without any paradox attached
to the −u2/2 term.



The far wake and induced drag of aircraft 427

2.13. Positivity of induced drag

This is restricted to ‘gliders’. Recall that (2.19) and (2.21) showed that the integral of
(v2 + w2 − u2) is larger than 2US. Further, the drag contribution of the term ρWSez

in (2.45) is ρS sin2 ε
√

U 2 + W 2 and therefore has the sign of S. Thus, showing that
S � 0, i.e. that the axial flow is globally jet-like provided the total pressure is uniform,
would be sufficient to ensure that the predicted drag is positive.

This proof is possible if the vorticity is all of the same sign on each side, say ωx � 0
for y > 0. In such a case, ψ � 0 over the entire half of the wake region, because
ψ = 0 on its boundary, and ∇2ψ � 0, so that ψ cannot have a local minimum. Then,
the function g ≡

∫
ωx dψ of § 2.5 must also be positive and therefore u, which has the

sign of g, is positive. As a result its integral, S, is positive. Visually, this comes from
vortex lines all carrying vorticity of the same sign, and taking helical shapes handed
in the same direction.

The general case in which ωx takes both signs has not been resolved at this point.
This is unfortunate, as most airplanes shed opposite vorticity from their horizontal
tails, and in an inviscid model of the flow this vorticity persists, interleaved with

the primary vorticity. The obstacle is that u =
√

U 2 + 2g − U is a convex function
of g, making it difficult to bound the integral of u from below even though the
integral of g is known. All that is known is that g must remain above −U 2/2, and
its integral WΓ b0/2 is positive. In a search for a counter-example to positivity, it is
a simple matter to devise a g function and a U value which would make S negative,
but another matter to devise functions ψ and ωx related by ∇2ψ = −ωx such that
g =

∫
ωx dψ leads to negative S. Even then, these functions are likely to add distance

in the inequality (2.21), defeating the attempt at a complete counter-example.
The deeper issue is that wake flow fields which can be the end result of the roll-up

process behind an aircraft might obey constraints beyond those listed here, which
are only the Euler and Bernoulli equations. The former are local to the wake; the
latter is the only aspect of the history of the fluid which is accounted for. A more
comprehensive analysis than the present one may lead to such a constraint, and the
constraint ensure positive predicted drag.

An argument could be made that opposite vorticity is normally mixed into the
dominant vorticity, because it triggers the centrifugal instability; therefore, the single-
sign case would be sufficient. This argument fails, because such a flow would have
suffered turbulent dissipation, and therefore not be representative of a glider any
more.

An intriguing question is whether the inequality (2.21) is tight, or whether stronger
results exist; for the classical elliptically loaded wing, (2.21) is over-satisfied by a large
ratio, near 5. If it is tight, what kind of wake might produce lower induced drag than
the classical theory predicts, for a meaningful set of constraints? This requires low∫∫

ωxψ dy dz, which is achieved if all the vorticity ωx is carried by a streamtube close
to the dividing streamtube on which ψ = 0; i.e. the support of vorticity is a shell.
Thus, the inequality does appear to be tight, although these distributions are far from
realistic. They minimize the transverse kinetic energy, and maximize u: the inside of
the shell becomes a large jet. This in turn boosts S (the integral of u, at the expense
of that of u2), again raising the predicted drag. This bind is illustrated by rewriting
(2.49) as

Di = ρ
√

U 2 + W 2(2 cos ε + sin2 ε) S + ρ cos ε

∫∫
ωxψ dy dz. (2.51)
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Figure 1. Velocity profiles in empirical model (2.52), with Γ/Ub0 = 0.05.
· · ·, uθ ; - - -, Γ/2πr; —, u; all normalized with Γ and b0.

Recall that the second term is positive. The detailed mathematical problem which
remains open is defined in the Appendix. It is proposed to minimize the ratio of Di

to ρΓ 2, which is a valid problem, but not derived from the true design priorities for
aircraft.

Also intriguing is the symmetry of vorticity distributions in z. Roll-up simulations
have all led to such a symmetry, but this does not prove that asymmetric patterns
cannot satisfy the equations (they might also exist, and be unstable).

2.14. Magnitude of the u2 effect

An estimate is made of the magnitude of the u2 term, using an analytical model which
approaches numerical results for an elliptical spanloading (Spalart 1996):

uθ (r) =
Γ

2πr
min

(
1, 1.27 +

1

4
log

(
r

b0

))
(2.52)

for r/b0 > 0.0103, with solid-body rotation in the small region, r/b0 < 0.0103. Here,
r is the distance from the vortex axis. From uθ , fair approximations of ψ and ωx

and therefore g and u are obtained, neglecting the interaction with the other vortex
(g ≈ − (Γ/16π2)

∫
(1.27 + 1/4 log(r/b0))/r3 dr). For a typical airliner cruise condition

with Γ/(Ub0) = 0.05, u peaks at 0.56U which is far from negligible as seen in figure 1.
However its extent is small, so that S equals only 0.0074Γ b0, and the integral of u2

is 0.0004Γ 2 so that the drag reduction normalized with the standard induced drag
πΓ 2/8 is 0.1 %. This is undetectable. In high lift with Γ/(Ub0) = 0.2, it is 1.4 %, or
about 1 % of total drag, which is detectable. The peak u is near 2U , but this is
dependent on arbitrary details of the model. The integral is less dependent, but the
estimate should still be taken with an uncertainty of the order of 25 %, especially
since the model derives from two-dimensional calculations which become unrealistic
with higher loadings.
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3. Summary
The analysis presented here possesses attractive features. The initial hope of

‘correcting’ the sign of u2 was not fulfilled, but the apparent paradox, relative to
the true kinetic energy, was resolved. The final result (2.45) yields lift and drag and
is almost as simple as the classical ones, which were dependent on the light-loading
approximation; the new term ρWSez and the re-direction of the induced-drag term
are of higher order than the leading drag term, so that the old and new theories are
not in conflict.

It was demonstrated that the formula cannot predict negative drag for a glider with
a monotonic circulation distribution (which produces single-signed vorticity), thus
not fully removing a doubt which has been lingering, at least in the author’s mind.
This incomplete proof of positivity applies to old and new theory. It is unfortunately
rather involved; a simpler one may be found, as may a general one for vorticity of
both signs.

The finding from (2.14) that the streamwise velocity perturbation u is exactly zero
outside the wake (meaning the region with vorticity and/or total-pressure alteration),
instead of approaching zero like a power of r in the way that v and w do, was also
unexpected. It is actually easy to justify, since variations of u require non-zero ωy

or ωz.
In (2.45) it is tempting to define the induced force (primarily, drag) as the second

line, and the combination of viscous losses and propulsion as the third line. The first
line would contain the lift, and a small correction. This definition would be unwise,
inasmuch as the flow around ‘a glider which would produce the same second line
as the true aircraft in (2.45)’ is a virtual entity. In particular, uinner responds strongly
to �H , thus invading the second line, which prompted Betz to introduce a virtual
velocity u∗ which would prevail if �H were absent and (v, w, p) the same in (2.2)
(Maskell 1972). This is a much more cogent idea, but this wake generated by the
‘Betz glider’ is still somewhat virtual (it also fails to conserve mass, requiring an
extensive inspection of the steps which demand that conservation). In addition, such
a definition would not be resistant to residual dissipation; it is a common occurrence
with tentative definitions of induced drag in slightly dissipative flows that the apparent
induced drag and the apparent parasite drag swap when measurements are taken in
different transverse planes. As a result, the argument that (whether experimentally or
numerically) obtaining the forces from wake surveys rather that at the aircraft allows
an instructive decomposition remains weak.

In the future, the various identities derived here may be used in a search for
more effective definitions of induced drag from wake surveys, i.e. more tolerant of
dissipation and/or incomplete roll-up. In fact any compelling general definition of
induced drag, even one using the entire flow field, would be very welcome.

The author thanks Dr L. B. Wigton for guidance in the theory of integration,
Dr F. Farassat for guidance over Generalized Functions, Professor P. Bradshaw for
comments on the manuscript, Dr J.D. McLean for many valuable discussions, and
Dr F. T. Johnson for helping find an error in an early draft. The reviewers made
insightful comments.

Appendix
The mathematical problem expressing the positivity issue is recalled here. The

solution consists of a vorticity field ωx(y, z), antisymmetric in y and zero outside a
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compact domain, and a scalar U . Additional quantities are defined by:

ψ ′ = ∇−2ωx with ψ ′ = O(1/r)

for large r;

w = −∂ψ ′/∂y; Γ =

∫∫
y>0

ωx dy dz; W = −
∫∫

y>0

wωx dy dz/Γ ;

ε = tan−1(W/U ); ψ = ψ ′ − Wy.

The fields satisfy ∇ωx × ∇ψ = 0. Then, g =
∫

ωxdψ; u =
√

U 2 + 2g − U . Finally, the
glider drag is

D/ρ = (2U + W sin ε)

∫∫
u dy dz + cos ε

∫∫
ωxψ dy dz.

The principal question is whether D can be negative; if not, what is the minimum
value of D/(ρΓ 2). Identities given in § 2.5, particularly (2.19), may be used to express
D differently.
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